Stationary ideal flow on a free surface of a given shape

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary layer flow beneath a uniform free stream permeable continuous moving surface in a nanofluid

The main purpose of this paper is to introduce a boundary layer analysis for the fluid flow andheat transfer characteristics of an incompressible nanofluid flowing over a permeable isothermalsurface moving continuously. The resulting system of non-linear ordinary differential equations issolved numerically using the fifth–order Runge–Kutta method with shooting techniques usingMatlab and Maple s...

متن کامل

Melting Heat Transfer and Radiation Effects on Jeffrey Fluid Flow over a Continuously Moving Surface with a Parallel Free Stream

This article is proposed to address the melting heat transfer of a Jeffrey fluid in Blasius and Sakiadis flow caused due to a moving surface. Thermal radiation and a constant free stream are considered in this mathematical model. The non-linear coupled dimensionless equations from the governing equations are attained by employing appropriate similarity transformations. The resulting dimensionle...

متن کامل

Heat generation and radiation effects on steady MHD free convection flow of micropolar fluid past a moving surface

This paper was concerned with studying the magnetohydrodynamic steady laminar free convection flow of a micropolar fluid past a continuously moving surface in the presence of heat generation and thermal radiation. Similarity transformation was employed to transform the governing partial differential equations into ordinary ones, which were then solved numerically using the finite element method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fluid Mechanics

سال: 2013

ISSN: 0022-1120,1469-7645

DOI: 10.1017/jfm.2013.44